3D Modeling Autonomous vehicles Lidar safety Technology

Depth Camera Needed to Support AV Lidar

point cloud of highway Depth Camera Needed to Support AV Lidar
Depth Camera Needed to Support AV Lidar

According to an eyewear industry research organization, 73% of all drivers in the United States require some amount of vision correction to drive safely. Yet for autonomous vehicles—the anticipated future of personal transportation— that number is currently stuck at 100%. This article will build the case for using a depth camera to provide the missing data that lidar is not capable of providing.

From an article by David Chen, co-founder and chief technical officer of Orbbec (Troy, MI, USA; www.orbbec3d.com) in Vision Systems Design.

Despite all their advanced technology, autonomous vehicles (AVs), in some important ways, are driving blind. LiDAR (Light Detection and Ranging), a method in which invisible pulsed laser light is bounced off objects to determine their range, receives a lot of attention as an enabling technology for AVs. While not entirely new, LiDAR is considered by many to be pivotal to the practical realization of self-driving cars.

LiDAR provides simultaneous localization and mapping (SLAM ) capability, solving the seemingly impossible challenge of mapping an unknown environment, and the vehicle’s place within it, in near real time, even as the vehicle moves at high speeds. With SLAM, AVs will have the long-distance information they need to operate. But, there are other challenges to overcome.

Proximity Issues

Although LiDAR is effective at detecting objects up to several hundred meters away, close-up object identification at distances of just a few meters is nearly impossible. When microseconds count before a collision, LiDAR cannot tell if the object about to be struck is a person or a trash can. Furthermore, LiDAR has security vulnerabilities yet to be countered, including the potential for attacks by lasers that can fool LiDAR systems into thinking objects are closer or farther than they appear.

Another issue involves activity inside the vehicle, particularly during the interim period before full autonomy is realized. AVs are clever—but not yet clever enough to overcome challenges posed by humans within the vehicle.

For some years to come, drivers will need to be ready to take over the automobile in response to changing conditions or situations. Once AVs reach SAE Level 3 or higher, for example, it will be easy for drivers to take too much for granted; perhaps even fall asleep. Yet with Level 3 systems, the car will sometimes require the driver to reacquire vehicle control. Without a way to detect when drivers are deeply distracted or incapacitated, the risk factor rises dangerously.

Finally, some manufacturers including Tesla and Toyota believe that the cost of LiDAR eliminates it from serious contention. Although this is a valid sticking point, there are scores of LiDAR companies around the world working to make such systems practical from both the engineering and business perspectives.

For the complete article on the need for a depth camera CLICK HERE.

Note – If you liked this post click here to stay informed of all of the 3D laser scanning, geomatics, UAS, autonomous vehicle, Lidar News and more. If you have an informative 3D video that you would like us to promote, please forward to editor@lidarnews.com and if you would like to join the Younger Geospatial Professional movement click here

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: