You’ve heard good things about 3D mobile mapping systems. Maybe a colleague has raved about the accurate spatial data they capture. Maybe a leader in your industry has spoken about how the technology has enabled applications that weren’t possible before. Maybe your friend posted an unboxing on LinkedIn.
From the NavVis blog by Sean Higgins.
Now you’re curious. Can these tools do anything for you?
You’ve tried to learn more, but there’s a snag: Virtually every blog post and explainer about 3D mobile mapping is aimed at experts who already use other 3D mapping technologies. They’re full of technical terms and lingo that are impossible to understand without years of experience.
This guide is different.
We’ll start at the very beginning to provide you with a total and comprehensive understanding of mobile 3D mapping — including how the technology works, what it can do for you, why you might pick one mobile mapper over another, when it’s best to use mobile mapping, and a lot more.
Here are some quick tips for using the guide: If you want to go deeper on a topic, simply click through to one of the explainers in the pertinent section and you’ll find as much detail as you need. If we’re covering a topic you already know, skip ahead. If the guide is missing something essential, let us know and we’ll add it.
With that out of the way, let’s start at the start.
Lidar for beginners
Lidar is an acronym for (li)ght (d)etection (a)nd (r)anging. The technology has roots in weather applications, where it was used to measure clouds, particles, and gases in the atmosphere. Today it is best known as a tool for capturing 3D data, and it’s here that lidar has hit the mainstream in a big way. You’ll find it today in iPhones, cars (but not Teslas), real-estate capture cameras, and more.
How does it work? Lidar can work in a number of ways, but most lidar sensors use lasers to generate 3D maps by a principle called “time of flight.” The lidar fires a laser, counts off the time it takes for the laser to reflect off a surface and travel back, and then uses that time to calculate the distance to that surface. Then, the sensor records that data as a 3D point relative to its own position.
For the complete Guide on 3D Mobile Mapping Systems CLICK HERE.
Note – If you liked this post click here to stay informed of all of the 3D laser scanning, geomatics, UAS, autonomous vehicle, Lidar News and more. If you have an informative 3D video that you would like us to promote, please forward to editor@lidarnews.com and if you would like to join the Younger Geospatial Professional movement click here