Lidar Markets

NASA’s EAARL Upgraded

EAARL-LIDAR_plane-thThe original National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL) was extensively modified to increase the spatial sampling density and to improve performance in water ranging from 3 to 44 meters (m).

The new (EAARL-B) sensor features a higher spatial density that was achieved by optically splitting each laser pulse into three pulses spatially separated by 1.6 m along the flight track and 2.0 m across the flight track, on the water surface when flown at a nominal altitude of 300 m (984 feet). The sample spacing can be optionally increased to 1.0 m across the flight track. Improved depth capability was achieved by increasing the total peak laser power by a factor of 10 and by designing a new “deep-water” receiver, which is optimized to exclusively receive refracted and scattered light from deeper water (15–44 m).

Two different clear-water flight missions were conducted over the U.S. Navy’s South Florida Testing Facility (SFTF) to determine the EAARL-B calibration coefficients. The SFTF is an established lidar calibration range located in the coastal waters southeast of Fort Lauderdale, Florida. We used 23 selected polygons at 23 distinct depths to compare a reference dataset from this site to determine EAARL-B calibration constants over the depth range of 6.5 to 34 m.

Read the full story on this impressive research platform.

 

Leave a Comment

This site uses Akismet to reduce spam. Learn how your comment data is processed.